45 research outputs found

    Knowledge Distilled Ensemble Model for sEMG-based Silent Speech Interface

    Full text link
    Voice disorders affect millions of people worldwide. Surface electromyography-based Silent Speech Interfaces (sEMG-based SSIs) have been explored as a potential solution for decades. However, previous works were limited by small vocabularies and manually extracted features from raw data. To address these limitations, we propose a lightweight deep learning knowledge-distilled ensemble model for sEMG-based SSI (KDE-SSI). Our model can classify a 26 NATO phonetic alphabets dataset with 3900 data samples, enabling the unambiguous generation of any English word through spelling. Extensive experiments validate the effectiveness of KDE-SSI, achieving a test accuracy of 85.9\%. Our findings also shed light on an end-to-end system for portable, practical equipment.Comment: 6 pages, 5 figure

    Physical Information Neural Networks for Solving High-index Differential-algebraic Equation Systems Based on Radau Methods

    Full text link
    As is well known, differential algebraic equations (DAEs), which are able to describe dynamic changes and underlying constraints, have been widely applied in engineering fields such as fluid dynamics, multi-body dynamics, mechanical systems and control theory. In practical physical modeling within these domains, the systems often generate high-index DAEs. Classical implicit numerical methods typically result in varying order reduction of numerical accuracy when solving high-index systems.~Recently, the physics-informed neural network (PINN) has gained attention for solving DAE systems. However, it faces challenges like the inability to directly solve high-index systems, lower predictive accuracy, and weaker generalization capabilities. In this paper, we propose a PINN computational framework, combined Radau IIA numerical method with a neural network structure via the attention mechanisms, to directly solve high-index DAEs. Furthermore, we employ a domain decomposition strategy to enhance solution accuracy. We conduct numerical experiments with two classical high-index systems as illustrative examples, investigating how different orders of the Radau IIA method affect the accuracy of neural network solutions. The experimental results demonstrate that the PINN based on a 5th-order Radau IIA method achieves the highest level of system accuracy. Specifically, the absolute errors for all differential variables remains as low as 10−610^{-6}, and the absolute errors for algebraic variables is maintained at 10−510^{-5}, surpassing the results found in existing literature. Therefore, our method exhibits excellent computational accuracy and strong generalization capabilities, providing a feasible approach for the high-precision solution of larger-scale DAEs with higher indices or challenging high-dimensional partial differential algebraic equation systems

    ORP4L Extracts and Presents PIP2 from Plasma Membrane for PLC beta 3 Catalysis : Targeting It Eradicates Leukemia Stem Cells

    Get PDF
    Leukemia stem cells (LSCs) are a rare subpopulation of abnormal hematopoietic stem cells (HSCs) that propagates leukemia and are responsible for the high frequency of relapse in therapies. Detailed insights into LSCs' survival will facilitate the identification of targets for therapeutic approaches. Here, we develop an inhibitor, LYZ-81, which targets ORP4L with high affinity and specificity and selectively eradicates LCSs in vitro and in vivo. ORP4L is expressed in LSCs but not in normal HSCs and is essential for LSC bioenergetics and survival. It extracts PIP2 from the plasma membrane and presents it to PLC beta 3, enabling IP3 generation and subsequentCa(2+)-dependent bioenergetics. LYZ-81 binds ORP4L competitively with PIP2 and blocks PIP2 hydrolysis, resulting in defective Ca2+ signaling. The results provide evidence that LSCs can be eradicated through the inhibition of ORP4L by LYZ-81, which may serve as a starting point of drug development for the elimination of LSCs to eventually cure leukemia.Peer reviewe

    Performance of compressed air energy storage system with regenerative heat exchangers

    No full text
    In order to improve the heat storage and heat exchange system of advanced adiabatic compressed air energy storage (AA-CAES) system, an AA-CAES system with regenerative heat exchangers (RHEs) is studied. The RHE is used to replace the conventional complex units, including heat exchangers, high temperature tank, and low temperature tank mode. For the AA-CAES with RHEs, the energy storage system is simplified to reduce the heat loss in the heat exchange and storage processes, and thus, the output work, energy storage density, energy storage efficiency of the system are improved. The thermodynamic model is established and the influences of compression ratio distribution, expansion ratio distribution and ambient temperature on the system performance are investigated. The results show that for the AA-CAES with RHEs, when the ratio of compression ratios is 1.14, the input work of the compressor is the minimum, the energy storage efficiency is 66.42%, and the energy storage density is 3.61 kWh/m3. When the ratio of expansion ratios is 0.82, the energy storage efficiency reaches the maximum value of 67.38%, and the energy storage density reaches the maximum value of 3.66 kWh/m3

    Feasibility of apalutamide combined with androgen deprivation therapy and short-course low-dose prednisone in treating metastatic hormone-sensitive prostate cancer: a pilot randomized controlled trial

    Get PDF
    IntroductionThe role of prednisone in the prevention of androgen receptor antagonist-related rash and treatment for metastatic hormone-sensitive prostate cancer (mHSPC) is unclear. This pilot trial (ChiCTR2200060388) aimed to investigate the feasibility of apalutamide combined with androgen deprivation therapy (ADT) and short-course low-dose prednisone in the treatment of mHSPC.MethodsAll patients received apalutamide and ADT and were randomly divided into two groups based on the administration of oral prednisone or not (control group). The primary endpoint was the incidence of rash. The secondary endpoint included the proportions of patients with a decline in PSA ≥50% from baseline, PSA ≥90% from baseline, and decreased to PSA ≤0.2 ng/mL.ResultsBetween June 2021 and March 2022, a total of 83 patients were enrolled (41 in the prednisone group and 42 in the control group). During the 6-month follow-up, the incidence of rash was significantly lower in the prednisone group compared with the control group (17.1% vs. 38.1%, P=0.049). There were no significant differences in the incidence of other adverse events, the number of patients who required dose adjustment (reduction, interruption, or discontinuation) of apalutamide due to rash, the number of patients with prostate-specific antigen (PSA) decreased by ≥50%, the number of patients with PSA decrease ≥90%, and the number of patients with PSA ≤0.2 ng/mL between the two groups. All patients with diabetes had stable glycemic control with no glucose-related adverse events.DiscussionIn patients with mHSPC, the addition of short-course low-dose prednisolone to apalutamide plus ADT can reduce the incidence of rash without risk of other adverse events

    Prognostic visualization model for primary pulmonary sarcoma: a SEER-based study

    No full text
    Abstract Primary pulmonary sarcoma (PPS) is a rare and poor prognostic malignancy that results from current clinical studies are lacking. Our study aimed to investigate the prognostic factors of PPS and to construct a predictive nomogram that predict the overall survival (OS) rate. We extracted data on patients diagnosed with PPS from 2010 to 2019 in the SEER database. A total of 169 patients were included after screening by inclusion and exclusion criteria. Univariate and multivariate COX regression analyses showed that age, pathological grade, liver metastasis, surgical intervention, and chemotherapy influenced the prognosis. We constructed the prediction model nomogram based on these factors. Moreover, the results of the internal and external ROC curves, calibration curves, and DCA plots confirmed that the model has good discrimination, accuracy, and clinical practice efficacy. The present study is the first population-based study to explore the factors affecting the prognosis of PPS. We established a novel prognostic nomogram to predict the OS rate, which can help to make proper clinical decisions

    Target-Induced Nano-Enzyme Reactor Mediated Hole-Trapping for High-Throughput Immunoassay Based on a Split-Type Photoelectrochemical Detection Strategy

    No full text
    Photoelectrochemical (PEC) detection is an emerging and promising analytical tool. However, its actual application still faces some challenges like potential damage of biomolecules (caused by itself system) and intrinsic low-throughput detection. To solve the problems, herein we design a novel split-type photoelectrochemical immunoassay (STPIA) for ultrasensitive detection of prostate specific antigen (PSA). Initially, the immunoreaction was performed on a microplate using a secondary antibody/primer-circular DNA-labeled gold nanoparticle as the detection tag. Then, numerously repeated oligonucleotide sequences with many biotin moieties were in situ synthesized on the nanogold tag via RCA reaction. The formed biotin concatamers acted as a powerful scaffold to bind with avidin-alkaline phosphatase (ALP) conjugates and construct a nanoenzyme reactor. By this means, enzymatic hydrolysate (ascorbic acid) was generated to capture the photogenerated holes in the CdS quantum dot-sensitized TiO<sub>2</sub> nanotube arrays, resulting in amplification of the photocurrent signal. To elaborate, the microplate-based immunoassay and the high-throughput detection system, a semiautomatic detection cell (installed with a three-electrode system), was employed. Under optimal conditions, the photocurrent increased with the increasing PSA concentration in a dynamic working range from 0.001 to 3 ng mL<sup>–1</sup>, with a low detection limit (LOD) of 0.32 pg mL<sup>–1</sup>. Meanwhile, the developed split-type photoelectrochemical immunoassay exhibited high specificity and acceptable accuracy for analysis of human serum specimens in comparison with referenced electrochemiluminescence immunoassay method. Importantly, the system was not only suitable for the sandwich-type immunoassay mode, but also utilized for the detection of small molecules (e.g., aflatoxin B<sub>1</sub>) with a competitive-type assay format

    Immobilization-Free Programmable Hairpin Probe for Ultrasensitive Electronic Monitoring of Nucleic Acid Based on a Biphasic Reaction Mode

    No full text
    This work designs a novel programmable hairpin probe (PHP) for the immobilization-free electrochemical detection of nucleic acid by coupling polymerase/nicking-induced isothermal signal amplification strategy with a biphasic reaction mode for the first time. The designed PHP (including a target-recognition region, a template sequence for enzymatic reaction and an inactivated <i>anti</i>-streptavidin aptamer) could program multiple isothermal reactions in the solution phase accompanying in situ amplified detectable signal at the electrode surface by the labeled ferrocene tag on the PHP. Upon addition of target analyte into the detection solution, target DNA initially hybridized with the recognition region on the PHP. Replication-induced strand-displacement generated an activated <i>anti</i>-streptavidin aptamer with the assistance of polymerase. Then, the polymerase/nicking enzymes could cleave and polymerize repeatedly the replication product, thus resulting in the formation of numerous template-complementary DNA initiator strands. The released initiator strands could retrigger the programmable hairpin probe to produce a large number of activated <i>anti</i>-streptavidin aptamers, which could be captured by the immobilized streptavidin on the electrode, thus activating the electrical contact between the labeled ferrocene and the electrode. Going after the aptamers, the carried ferrocene could produce the in situ amplified electronic signal within the applied potentials. Under optimal conditions, the electrochemical signal increased with the increasing target DNA concentration in the dynamic range from 5 fM to 10 pM with a detection limit (LOD) of 2.56 fM at the 3<i>s</i><sub>blank</sub> criterion. Importantly, the methodology with high specificity was also validated and evaluated by assaying 6 target DNA-spiked human serum and calf thymus DNA samples, and the recoveries were 95–110%. Further work for the programmable hairpin probe could be even utilized in a real world sample to detect miRNA-21 at femtomol level

    Plasmonic AuNP/g‑C<sub>3</sub>N<sub>4</sub> Nanohybrid-based Photoelectrochemical Sensing Platform for Ultrasensitive Monitoring of Polynucleotide Kinase Activity Accompanying DNAzyme-Catalyzed Precipitation Amplification

    No full text
    A convenient and feasible photoelectrochemical (PEC) sensing platform based on gold nanoparticles-decorated g-C<sub>3</sub>N<sub>4</sub> nanosheets (AuNP/g-C<sub>3</sub>N<sub>4</sub>) was designed for highly sensitive monitoring of T4 polynucleotide kinase (PNK) activity, using DNAzyme-mediated catalytic precipitation amplification. To realize our design, the AuNP/g-C<sub>3</sub>N<sub>4</sub> nanohybrid was initially synthesized through in situ reduction of Au­(III) on the g-C<sub>3</sub>N<sub>4</sub> nanosheets, which was utilized for the immobilization of hairpin DNA<sub>1</sub> (HP<sub>1</sub>) on the sensing interface. Thereafter, a target-induced isothermal amplification was automatically carried out on hairpin DNA<sub>2</sub> (HP<sub>2</sub>) in the solution phase through PNK-catalyzed 5′-phosphorylation accompanying formation of numerous trigger DNA fragments, which could induce generation of hemin/G-quadruplex-based DNAzyme on hairpin DNA<sub>1</sub>. Subsequently, the DNAzyme could catalyze the 4-chloro-1-naphthol (4-CN) oxidation to produce an insoluble precipitation on the AuNP/g-C<sub>3</sub>N<sub>4</sub> surface, thereby resulting in the local alternation of the photocurrent. Experimental results revealed that introduction of AuNP on the g-C<sub>3</sub>N<sub>4</sub> could cause a ∼100% increase in the photocurrent because of surface plasmon resonance-enhanced light harvesting and separation of photogenerated e<sup>–</sup>/h<sup>+</sup> pairs. Under the optimal conditions, the percentage of photocurrent decrement (Δ<i>I</i>/<i>I</i><sub>0</sub>, relative to background signal) increased with the increasing PNK activity in a dynamic working range from 2 to 100 mU mL<sup>–1</sup> with a low detection limit (LOD) of 1.0 mU mL<sup>–1</sup>. The inhibition effect of adenosine diphosphate also received a good performance in PNK inhibitor screening research, thereby providing a useful scheme for practical use in quantitative PNK activity assay for life science and biological research

    Integrated Analysis of Transcriptome, microRNAs, and Chromatin Accessibility Revealed Potential Early B-Cell Factor1-Regulated Transcriptional Networks during the Early Development of Fetal Brown Adipose Tissues in Rabbits

    No full text
    In domestic mammals, cold stress decreases the survival rate of newborns and increases the cost of management. Brown adipose tissue (BAT) is the main thermogenic organ for cubs, and well-developed fetal BAT (FBAT) is beneficial for newborns to maintain core temperatures during the first several days of life. However, our knowledge of the epigenetic mechanisms during the early development of FBAT remains largely unknown. Rabbits (Oryctolagus cuniculus) are economically important domestic animals. In this study, a histological analysis shows that the tissue content, thermogenic capacity, and lipid content of FBAT dramatically increases from gestational day 21 (G21) to gestational day 24 (G24) in rabbits. RNA-seq, microRNA-seq (miRNA-seq), and the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) show that many genes, miRNAs, and chromatin-accessible regions (referred to as peaks) were identified as significantly changed from G21 to G24, respectively. The upregulated genes from G21 to G24 were significantly enriched in the mitochondrial metabolism and thermogenesis-related signal pathways. The integrated analysis of transcriptome and chromatin accessibility reveals that the peaks in the promoters have a more regulatory effect than peaks in other genomic elements on the expression of their nearby genes in FBATs. The upregulated genes that are associated with increased chromatin accessibility in the promoter regions are involved in the energy metabolism-related signaling pathways. The genes that have a greater tendency to be regulated by miRNAs than the chromatin accessibility in gene promoters are involved in the apelin, insulin, and endocytosis signaling pathways. Furthermore, genome-wide transcription factor (TF) footprinting analysis identifies early B-cell factor1 (EBF1) as playing a key role during early FBAT development. The carbon metabolism, citrate cycle, and PPAR signaling pathways are significantly enriched by the predicted EBF1-regulated cascade TF-network. In conclusion, our work provides a framework for understanding epigenetics regulatory mechanisms underlying the early development of FBAT and identifies potential TF involved in the early development of FBAT in rabbits
    corecore